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AbStract. We consider the scattering of a free quantum pariicle on a singular potential with 
rather arbitrary support boundary geometry In the classical limit h = 0, this problem reduces 
to the well known problem of chaotic scattering. The universal estimates for the stability of the 
sanering amplitudes are derived. The application of the obtained results to the mesoscopic 
systems and quantum chaos are discussed. We also discuss a possibility of experimental 
verification of the obtained results. 

1. Introduction 

Recently, much attention has been paid to the theoretical and experimental investigations 
of the scattering of a free quantum particle o f f  obstacles with rather complicated boundary 
forms. Studies of the scattering processes of an electron with mesoscopic resonant tunnelling 
structures, when quantum effects and the geometry of the scattering potential are important 
[1-13]. are of special interest. Usually, these quantum systems are non-integrable, which 
means that the number of degrees of freedom exceeds the number of global independent 
integrals of motion. In this case, one cannot separate variables in the Scbrodinger equation 
or the corresponding Newtonian equations. Treated classically, these systems exhibit 
dynamical chaos, i.e. strong (exponential) instability of motion under a small variation 
of parameters (such as the energy of an incident wave, form of the potential, etc). This 
is why one of the main problems in studying such systems is to determine the role and 
contribution of fluctuations and correlations in the scattering amplitudes and cross sections 
[14-221. 

The problem of fluctuations in the scattering amplitudes and cross sections of elastic 
(and inelastic) collision processes is well known and has a long history (see [23-281 and 
references therein). In elastic scattering, the fluctuations of the scattering amplitudes can 
appear because of a high sensitivity to the details of the scattering: the parameters of the 
incident wave and the geometry of the scatter potential. At the same time, the coherent 
effects (correlations) are also present in the scattering processes in some region of parameters 
[21-24,291. Thus, the problem arises: how does one separate and describe the random and 
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coherent effects in the scatttering processes, and how does one measure their conhibution 
in experiments? 

The first theoretical investigations into statistical properties (fluctuations) of scattering 
amplitudes and cross sections were presented in [23-281 (Ericson fluctuations). According 
to [23,24], the main reasons why the scattering amplitudes become random are as follows. 
Let an incident wave have a wavelength A = 2rr/k much smaller than the characteristic 
dimension L of the region D where the scattering potential q ( x )  (see below) is located 
k L  >> 1 and x = (XI. , . . , x n ) .  Before escaping the region D, the incident wave can be 
reflected many times off the boundaries rj of the potential support &). In this case, 
a wave similar to a standing wave appears in the system. These ‘quasi-standing’ (or 
quasy-stationary) waves can be associated with the resonances in the scattering amplitude. 
These resonances are observed in various experiments and, recently, in mesoscopic systems 
applications which are very promising for the future (see, for example, [30-32]). Each nth 
resonance is characterized by two main parameters: the energy E ,  and the width r,, [33], 
There is usually one more important parameter which characterizes the spacing between the 
neighbouring resonances: A&. Because the process of scattering is completely defined, 
the scattering amplitudes should be reproducible in different experiments, providing that 
all conditions remain identical However, as was mentioned above, under the condition 
kL >> 1, the number of reflections of the incident wave in the region D can be very 
large (in [23,24], the following inequality is also assumed to be satisfied: Fn/AEn >> I ,  
which is called the regime of overlapping levels). Then, a small variation of parameters 
can completely change the ‘trajectory’ of the wave and, consequently, the phase of the 
scattering amplitude. These ideas were developed in [23,24,26] on the basis of the statistical 
approach [ 341. 

Recently, the problem of scattering-amplitude fluctuations has attracted additional 
interest in connection with the so-called ‘chaotic (irregular) scattering’ (CS) in chemical 
reactions, particle physics, mesoscopic systems and other areas of physics [ 14-22.35-371. 
The investigations into CS can be divided conventionally into three groups: (i) classical cs 
(ccs); (ii) semiclassical CS (sa); and (iii) quantum cs (Qcs). The basic ideas are associated 
with ccs, since only in this case does the ‘real dynamical chaos’ occur. The investigations 
into ccs were stimulated by the significant progress achieved recently in the study of 
dynamical chaos in classically bounded Hamiltonian systems 138411.  The classical phase 
space in this case can be very complicated and each of the trajectories belongs to one of the 
following three classes: (a) stable periodical trajectories; (b) unstable periodical trajectories; 
and (c) chaotic (unperiodical) trajectories. Dynamical chaos in bounded systems is stationary 
in the sense that it does not disappear at large times (T  --t CO). The systems where ccs 
takes place are unbounded and additional trajectories appear: (d) unbounded trajectories. 
For these trajectories chaos can only be transient. 

A special interest in the scattering problem is represented by singular potentials q ( x )  
which satisfy the following property: q ( x )  = 03 when x E D and q ( x )  = 0 when x @‘ D, 
where D is some compact (located region) in R ” .  In the case of a singular potential q ( x )  
considered below, the (a) trajectories can be absent (see, for example, [15]) and the (b) and 
(c) trajectories represent a so-called ‘repeller’ 1151. For the (d) trajectories, this repeller 
leads to ‘transient chaos’ which was previously investigated in various bound conservative 
and dissipative systems (see, for example, t42-441). In this sense, a singular scattering 
potential leads to the most chaotic classical ‘repeller’ and to the biggest fluctuation level in 
the scattering amplitude. 

The main achievements in ccs are associated with the understanding of the following 
facts: (i) although, in CCS, a direct contribution in the cross section is connected with the (d) 
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trajectories, the influence of the repeller QR-bounded (trapped) trajectories on the scattering 
and fluctuation process plays a very important role; (ii) ccs is a general phenomenon rather 
then an exception. (In some special cases of a singular potential [45], the set QR can consist 
of only one unstable periodic trajectory.) Usually, for singular potentials, the repeller QR 
is a Cantor set with a fractal structure (see, for example, [15] where an elastic scattering 
on three hard discs (3HD) was considered) and is characterized by several quantities, such 
as the Hausdorff dimension D H ,  Lyapunov exponents hi, the KolmogorovSinai entropy 
per unit time h u ,  the escape rate y and other quantities (see [15] and references therein). 
There are some relations between these parameters, for example (see [15]) 

The escape rate y is a classical equivalent of the resonance width r: y - r / h  [E].  
So, relation ( 1 . 1 )  shows a fundamental property of ccs: when the repeller QR is chaotic 
(hm z 0), the escape rate (and the resonance width r) is decreasing. Also, in this case, 
large fluctuations appear in the quantities which characterize the process of ccs, for example, 
in the time delay function [ 15,20,22]. 

When one investigates scs and QCS, the main problem is: what are the ‘fingerprints’ 
of the classical chaos on the quantum scattering? The problem of QCS was considered 
for the first time in [14], where the elastic scattering was studied on a two-dimensional 
surface of constant negative curvature. According to [14], the scattering phase shift as a 
function of the momentum is given by the phase angle of the Riemann’s zeta function and 
displays a very complicated (chaotic) behaviour (see, for details, [14,21,22]). In [16], scs 
was studied in the 3HD system using the analysis based on the Gutzwiller trace formula 
[46]. This trace formula is valid when all periodic orbits of the repeller QR are unstable 
and isolated. Both these conditions can be satisfied for the singular potential q ( x ,  t -+ 00) 

considered in sections 2 and 3, including the particular case of a singular potential of the 
3HD system considered in [15-181. 

The quantum analysis presented in [21,22] shows that in QCS, the statistical properties 
of the fluctuations in the cross section can be described by the theory of random matrix 
ensembles [41]. Different aspects on the problem of fluctuations in SCS and QCS are 
discussed in 114.16-28,35371. 

At the same time, much less is known about the contribution and characteristic properties 
of the correlations (coherent component) in cs. As was pointed out in 123,241, a significant 
level of correlations in the cross section should be expected when, for example, the energy 
change 6 E  of the incident wave in (2) is small compared with the resonance width r 
( r / S E  > 1). According to [23,24], in this case, essentially the same states are excited and 
the scattering amplitudes are changed insignificantly. The existence of correlations in QCS 
was also discussed in [21,22] for some qUaSi-lD periodical potential (in [22], an experiment 
is discussed in connection with the correlations in the chaotic scattering). It was shown 
in I21.221 that the energy correlations for the matrix elements of the S-matrix exist and 
exhibit themselves when r / 6 E  > 1, in agreement with the Ericson hypothesis [33,34]. 

The same problem of the contribution of correlation and fluctuation effects arises when 
calculating a transition probability of an injected electron transmitted through mesoscopic 
devices such as the double-barrier resonance tunnelling structure (DBRTS), quantum dots 
and others [8-13.3&32]. In this case, a transmitted electron ‘feels’ the boundary of the 
scattering potential q ( x )  and the transmission amplitude can vary significantly depending 
on the small vmiation of the sample’s form. As discussed above, we again come, in this 
case, to the problem of CS. So, both these problems, QCS and the scattering problem in 
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mesoscopic systems, are strongly connected. The correlation properties of the transmission 
amplitude in  the mesoscopic system, at large values of r, were observed experimentally 
in [32]. 

In this situation, it is important to consider the problem of contribution of correlations 
and fluctuations to QCS for a rather general class of potentials q ( x ) .  Although, in this case, 
only general statements about the scattering amplitude can be made, such an approach has 
an obvious advantage: these general statements can be applied to a wide variety of systems. 
From this point of view, singular potentials are of particular interest because they may 
produce the ‘repeller’ QR, which can be ‘extremely chaotic’ and the level of fluctuations 
can significantly increase. There are no results allowing us to estimate the contribution 
of fluctuations and correlations in the scattering amplitude in this case. Our main result, 
discussed below, is that even in the case of strongly singular potentials, some universal 
correlations exist in the scattering amplitude. 

In this paper, we consider a scattering problem for a free quantum particle scattered 
by a bounded obstacle with rather arbitrary boundary shapes. The boundary may consist 
of several connected components. As was already mentioned, a similar situation occurs in 
ballistic scattering processes in the mesoscopic systems widely considered nowadays. The 
results obtained in this paper can be formulated as follows. It is shown that there exists a 
region of parameters where a small variation of rather arbitrary strongly singular potential 
(note that the variation of the total energy is infinite for the potentials we consider) leads 
only to small variations of the scattering amplitudes. This parameter region can be defined 
as a region of strong correlations. These correlations are universal in the sense that they 
do not depend on the concrete structure of the resonances in the scattering amplitude in 
a particular system under consideration. Because the results we discuss in this paper are 
given in the form of exact statements, we outline their proofs. 

The paper is organized as follows. In section 2, we present a stability estimate for 
the scattering amplitudes for a rather wide class of potentials. In section 3, a proof of the 
stability of the scattering amplitudes is given for a singular potential. Discussion of the 
results is given in section 4. 

A G R a m  and G P B e m m  

2. Stability estimate For the scattering amplitude 

In this section, we prove that small variations in the potential lead to small perturbations in 
the scattering amplitude for a class of strongly singular potentials which can take infinite 
values on sets of positive measure. The notion of small variations will be specified. 

(1) Let D = U:=, D,, r := aD = U,=, r,, where Dj c R” is a bounded domain with 
a CZ.”, 0 c U < 1, boundary rj. This means that, in the local coordinates, the equation of 
rj := aDj is x, = @(x’) ,  x’ := (XI, xz.. . . , x,,-,), @ E c2+, ~l@llo.. < 

Assume D c B, := { x  : 1x1 < a )  and D i n D i  = 0 if i # j ,  J c 63. Define 
uo := exp(ikru x )  and 

I 

in D I ’  0 in D‘:= R”\D q ( x ;  t )  := tx&) xrJ(x)  := 

where parameter f E [ I .  001. For definiteness, we take only n = 3 in what follows. Consider 
the scattering problem 

[Vz + kZ - q ( x ;  f)]u = 0 in R3 (2.1) 
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X 
r := 1x1 -+ 00 - '- 

[X I  . - - I  

exp(ikr) 
U = exp(ika. x) + A(')(-', CY, k)- 

r 

(2.2) 

The scattering solution u(x, a, k; t )  := u(t)  is uniquely defined as the solution of (2.1) and 
(2.2). It was proved in [47-49] that 

lu( t )  - url + 0 a~ t + +03 (2.3) 

where ur is the scattering solution to the obstacle scattering problem 

(V' + kz)ur = O in D' ur = 0 on r (2.4) 

The relation (2.3) has the following meaning: 

where b' is any compact strictly inner subdomain of D'. Here and below, c z 0 denote 
various positive constants independent oft or any other parameters which vary. 

Estimates (2.6) and (2.7) are proved in [4749]. It is proved in [50] that if q j ( x ) ,  
j = 1,2, generate the scattering amplitudes Aj (or', CY, k) then the following relation holds: 

- ~ ~ A ( C Y ' , @ ,  k )  = P(X)UI(X,CY,~)UZ(X, - d , k ) d r  (2.8) 

where 

and uj 
the 
BR 

A := A I  - Az P := 41 - 42 

the scattering solutic rresponding to .. Formula (2.8) is derived in [50] under 
assumption that qj (x)  E L i , ,  p > n/2  and q(x) is in L'(Bk),  where BK := R3 \ BR. 
:= { x  : 1x1 6 RI ,  R > 0 is an arbitrary large fixed number. 
In [51] an analogue of (2.8) is derived for obstacle scattering. Namely, it is proved in 

[5 11 that if r,, j = I ,  2, are bounded sufficiently smooth (say, Lipschitz) surfaces and A j  are 
the corresponding scattering amplitudes, Aj := Ai-,, A := A I  - Al .  then [51, formula (4)] 

- 4 n A ( d , ~ ~ , k )  = [ ~ ~ N ( s , c Y , ~ ) u ~ ( s ,  - d , k )  - u I ( s , ( Y , ~ ) u z N ( s ,  -a' ,k)]ds (2.10) I,, 
where N i s  the exterior unit normal to r12 = aDlz, where D12 := Dl u D z .  
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(2) We claim that, uniformly in fl, tz E [ I ,  CO], the following stability estimate holds 

(2.11) 

where c = constant > 0, c is independent on fj E [ I .  CO] and on Dj c E,, j = 1,2, such 
that the boundaries of Dj satisfy the estimate I l @ j j l l c 2 , v  < 

The distance ~ ( D I ,  0 2 )  in (2.1 1) is defined by the formula 

(3) Note that if t E [ l ,  to], where 1 c to < CO is any fixed number, then the following 
estimate can be derived from (2.8): 

IA(‘l)  I 
SUP 0, (CY ,a, k) - At)@’, % k)l 

u’.ore.P:Ocki<k<k~<m 

Here we have used the known estimate [50,52] 

(2.13) 

In (2.12), laDjl denotes the area of the surface aDj and ID1 n 91 denotes the volume of 
D~ n D ~ .  

(4) If ti = tz = +CO, then the stability estimate 

SUP lA~(a’,U,k) - Az(@’,.:or,k)l < C P ( D I ,  4) (2.14) 
a‘.a&;Odj <k<kz<m 

follows from formula (2.10), since 

SUP IUjN(S,a,k)I < c 
$Er, ;asP:Od~ <k<kz cm 

SUP luj(s, -a’, k)l < C P ( D I ,  02)’ 
~ w ; S e r , + , : o C k ,  <k<h c m  

Here r3 := rl. j = 1,2. 
The basic result (2.1 I), which contains both stability estimates (2.12) and (2.14). is of 

interest because the inequality (2.11) holds uniformly in t ,  t E [ I ,  CO]. 

(5) As an example, we present here the results on the dependence c(k) in (2.14) for the 
special case of the scattering potential. We claim that the constant c in (2.14) is of the order 
O(kz)  as k goes to infinity under the following assumptions: (i) J = 1; (ii) s .  N > b > 0 
for s in SI (SI := r) and for s in the perturbed surface, say Sz; here N is the outer normal 
to SI (or SZ) at the point s, b > 0 is a constant independent of s, k and other parameters. 
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Proof. If (ii) holds, then. from estimate (2.6) in [53, p 661, it follows that: [ l v l l ~ ~  c; 
c is always assumed to be independent of k ;  v := U - uo. where U is the scattering solution 
corresponding to S I ;  and u g  is the plane wave. From this and the Helmholtz equation, 
one obtains llullz < ck2. where llvllz is the Sobolev-space H 2  norm. Let I U N ~  stay for the 
LZ(Sl)  norm of UN on St. Then, an interpolation inequality yields the desired estimate: 
l v ~ l  < ck3D. This estimate implies the claim that the constant c in (2.14) is of the order 
O(k2) as k grows to infinity. Indeed, estimating integrals in (2.10) by Cauchy‘s inequality, 
one obtains the product sum of the terms of type ~ U N I  IvI and terms of lower order in 
k which are easy to estimate by O(k3/’). By an interpolation inequality, the norm IvI is 
O(k1/2) ,  so the result follows. Let us formulate the known interpolation inequalities used 
above (see [40]) 

IID‘UIILI(S,) < ~ t ~ / ~ - ‘ l l ~ 1 1 2  + f-”2-‘l~v~l (2.15) 

where llvll is the L2 norm in B. \D, aD = SI, I > 0 in (2.15) is an arbitrary parameter, and 
r = 0 or 1. Take r = 0 in (2.15) and minimize the right-hand side of (2.15) in f > 0, using 
the formulae IIu112 < ck2 and llull < c, to obtain the estimate O(k’/2)  for the right-hand 

D 

Remark. The order in k as k + 00 in the estimate for the constant c in (2.14) is not 
optimal. The optimal order is, probably, O(1). For a ball, for instance, we can prove that 
lvNl = O(k) rather than O(k3”) and IuI = O(1) rather than O(k l / z ) .  This yields c = O(k) 
as k CO. The estimate based on the Cauchy inequality, used in OUT derivation, does not 
take into account possible cancellations during integration in (2.10) due to oscillations of 
the integrand for large k.  The optimal orders are: (i) O(1) for IvI; (ii) O(k) for l u ~ l  and; 
(iii) 0(1) for the cross section as k -+ ca. These conclusions can also be obtained from 
the geometrical optics approximation (see formula (150.16) in [54]) 

side. A similar argument for r = 1 yields the estimate O ( k 3 9  as claimed. 

(6) Let us formulate the result proved in [491. 

Theorem I .  Under the assumption made in section 2.1, estimate (2.11) holds with the 
constant c > 0 independent of f ,  where t E [1,001. Dj c Bo, aD, c CZ.” and 

In section 3, the proof of estimate (2.14) is given for the case tl = rz = CO, which is of 
ll@jllo,~ < Q v .  

interest in applications. In section 4, applications are discussed. 

3. Proof of the stabsty estimate (2.14) 

Let us assume that 

This is the case discussed in section 2.4 (see formula (2.14)). We assume n = 3 for 
definiteness. The argument is the same for n 3 2. 

There are three ways to prove estimate (2.14) under assumption (3.1). One way is 
to take f l  = r2 = +CO in (2.11) and note that the right-hand side equals cp(D1, Dz) if 
t l  = rz = +CO. The second way is to take f l  = rz = t < CO and then let I -+ +ca and use 
formula (2.8) and estimates (2.6) and (2.7). These estimates allow one to derive formula 
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(2.10) from which estimate (2.14) follows. Estimate (2.14) is a particular form of estimate 
(11) for the case when min(tl, t z )  = +w. The third way is based on estimate (2.10). Let 
us use this way. We assume that the distance p(D,, Dm),  j # i n ,  is much greater than the 
distance p ( D j ,  bj), where bj is the perturbed domain Dj. The number J of the connected 
components of the domain D is fixed and finite. Therefore, the input of the variation of a D  
in the scattering amplitude is of the order of magnitude of the input of the variation of aDj, 
1 < j < J .  Therefore, one may use formula (IO) assuming that aD has one connected 
component and aD2 := ab1 is a small variation of aDi in the sense that p ( D 1 ,  Dz)  
is small. It follows from (2.10) that 

1 
IA(01', 01, k)l < - 

A G Ramm and G P B e m n  

IUiN(S, Ly, k ) U z ( S ,  -a', k)l ds 
411. Ll 
+.L I U I ( S ,  OC, ~ ) U Z N ( S .  - d , k ) l  ds := Ii + Iz (3.2) 

where r; is the part of rI which lies outside D2 and r; is the p& of rz which lies 
outside D I .  

One can use the following estimates: 

y := max SUP lUjN(s3 P? k)l < c (3.3) 
J'1~2scr, $ E S ' : O < k ~ < k < k ~  c m  

mm SUP I~j+i (s ,  0 ,k ) l  < C P ( D I ,  Dz)  u3 := U I  (3.4) 
J ' l , z~~r ;  ;$ES';O<kl<k<kr <m 

and formula (3.2) to obtain the desired estimate (2.14). Let us discuss estimates (3.3) and 
(3.4). The constant c in (3.3) and (3.4) depends on the parameters k i ,  kz, a and on the 
parameter O", which is introduced in section 2.1 and which describes the smoothness of 
the boundary: l l@j l l c z .u  < Ou. This constant does not depend on the particular choice of 
0,. Let us prove the last claim. Suppose, on the contrary, that there exists a sequence 
Dj. of the obstacles Djn c Bo, Il@jjnIlcz,~ < O", such that y. 2 c,, c. + 00, where c, 
are the constants in (3.3) and (3.4) and yo is y for the obstacle Dj., n = 1 , 2 , .  . . . By the 
Arzela-Ascoli compactness theorem, one can assume that 

Cl," J4: 
@jn + @ j  0 < v' < v ujn 3 u j  n + cc 

where uj is the scattering solution corresponding to the limiting configuration of the surfaces 
ri and rz. For fixed surfaces rl and rz, estimates (3.3) and (3.4) hold [53]. 

luiO,B,k)l= l u i ( ~ , B , k ) - ~ i ( J . B , k ) l  < ~ ~ p l ~ i ~ i ( s , B , k ) l l ~ - J I  < c p ( D ~ , D z )  

where s E r;, ? E rl, U,(?, p. k )  = 0 and the segment ?s is directed along the normal to 
r;. A similar argument is valid for U&, p ,  k )  = 0. s E ri. 

If rj, + rj in the sense @jn -+ $j  as n + 00, then U ~ N "  + U ~ N  as n + cc (uniformly 
in s E rj and in the parameters p E Sz. k E [kl , k21, 0 < kl < k2 < 00) so that yn + y as 
n + W. Here, y is the number defined by the left-hand side of (3.3) with uj corresponding 
to the limiting surfaces rj. Since this y < m, one obtains a contradiction: the inequality 
y,, > c, -+ +m contradicts the equation y. -+ y < W. This contradiction proves that the 
constant c in (3.3) and (3.4) does not depend on the particular choice of the obstacles Dj 
as long as the two conditions are satisfied: Dj C B., I I c * . ~  < Q v ,  and the parameters a ,  
Qu, kl and kz define the value of c in (3.3). (3.4) and (2.14). 

Note that i t  is sufficient to prove estimate (3.3). Indeed, 

c1.d 
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4. Conclusions 

In connection with the problem of correlation effects in QCS and in mesoscopic systems, the 
consideration presented in sections 2 and 3 are of considerable interest. In particular, the 
estimate for the scattering amplitudes given by formula (2.14) is valid for the general case 
of singular potentials q ( x )  supported in a compact region D .  In this case, the corresponding 
classical repeller S ~ R  is, in general, chaotic. So, result (2.14) means that the strong quantum 
correlations in the scattering amplitudes exist in some region of parameters, even for 
classically chaotic (irregular) scattering and are of the universal nature. The latter means 
that the quantum correlations in this region of parameters do not depend on the specific 
character of the resonance structure of the scattering amplitude. Estimate (2.14) includes 
the constant c which actually depends on the systems parameters 

c = c h ,  kz, a ,  W. (4.1) 

This is why it is difficult to establish a direct relation between the region of parameters where 
estimate (2.14) is valid and the region ( 6 E  > I? > Ai?) where the Ericson fluctuations are 
important. 

The analytical and experimental investigations of the dependence (4.1) are of 
considerable interest for the further development of our understanding of the correlation 
effects in the processes of Qcs. The function (4.1) can be investigated, for example, in 
resonant tunnelling experiments in mesoscopic systems when the samples are prepared 
with small boundary variation (scattering potential). Another possibility to investigate the 
correlation and fluctuation effects in QCS can be realized by the microwave experiments 
(see, for example. [55]). The main idea, which is used in these experiments, is that the 
Schrodinger equation for a free particle reduces to the Helmholtz equation which describes 
the propagation of classical waves. This correspondence was utilized in [55] to investigate 
the role of fluctuations in cs. In our opinion, this method is rather promising: it allows one 
to imitate the ballistic regime in mesoscopic systems, taking into account scattering, and to 
study the correlation effects in mesoscopic systems using a microwave technique. 
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